A worldwide e-Infrastructure for NMR and structural biology

Low-Conductivity Buffers for High-Sensitivity NMR Measurements

Typearticle
DateJ Am Chem Soc. 2002 Oct 9;124(40):12013-9.
AuthorsAlexander E. Kelly, Horng D. Ou, Richard Withers and Volker Dötsch
Year2001

The sensitivity of nuclear magnetic resonance (NMR) probes, especially the recently introduced cryogenic probes, can be substantially reduced by the electrical noise generated by conductive samples. In particular, samples of biological macromolecules, which usually contain salts to keep the pH constant and to prevent aggregation, can experience a significant reduction in sensitivity. So far this dependence has forced researchers to minimize the salt concentrations in their samples. Here we demonstrate that the decisive factor is not the salt concentration itself but the conductivity which is a function of both the concentration and the mobility of the ions in solution. We show that by choosing buffers with low ionic mobility, the sample conductivity can be dramatically reduced and the sensitivity substantially enhanced compared to the same measurement with an equal concentration of a standard NMR buffer such as phosphate. We further show that the highest sensitivity gain of one buffer over another buffer is equal to the square root of the ratio of their ion mobilities and describe a simple method to evaluate the effect of a certain buffer on the sensitivity.

Contacts

pticcca

Cite WeNMR

 
Usage of the WeNMR portals should be acknowledged in any publication:
 
"The WeNMR project (European FP7 e-Infrastructure grant, contract no. 261572www.wenmr.eu), supported by the European Grid Initiative (EGI) through the national GRID Initiatives of Belgium, France, Italy, Germany, the Netherlands, Poland, Portugal, Spain, UK, South Africa, Malaysia, Taiwan, the Latin America GRID infrastructure via the Gisela project, the International Desktop Grid Federation (IDGF) with its volunteers and the US Open Science Grid (OSG) are acknowledged for the use of web portals, computing and storage facilities. "
 
And the following article describing the WeNMR portals should be cited:
Wassenaar et al. (2012). WeNMR: Structural Biology on the Grid.J. Grid. Comp., 10:743-767.

EGI-approved

The WeNMR Virtual Research Community has been the first to be officially recognized by the EGI.

European Union

WeNMR is an e-Infrastructure project funded under the 7th framework of the EU. Contract no. 261572